Description: Please download the Oscar_2000_2018.csv dataset provided. This dataset amounts to a


Please download the Oscar_2000_2018.csv dataset provided.

This dataset amounts to a total of 1,235 movies from 2000 to 2018, where each film has 100+ features including:

It sports 20 categorical, 56 numeric, 42 items, and 1 DateTime field totaling 119 fields giving you plenty of details about various aspects of the past nominees and winners.

The dataset is organized such that each record represents a unique movie identified by the field movie_id.

The first 17 fields have to do with the metadata associated with each movie e.g., release_date, genre, synopsis, duration, metascore.


Part 1: EDA

1. Using a scatterplot or a pair plot show the relationship between features “user_reviews” and “critic_reviews”. Find the Pearson’s correlation coefficient(r) between the 2 features.

2. Plot the average “duration” per “certificate” feature. In other words, x-axis would be “certificate” and the y-axes would be the average duration.

3. Plot a histogram for the “genre” feature. Note that the field “genre” needs to be split first to find the frequency for each individual genre type; “Comedy”, “Romance”, “Action” etc. (Hint: Functions like “strsplit” in R or “split” in Python can be used)

Part 2: Model Building

1. You are going to predict “Oscar_Best_Picture_won” feature; this will be your target variable. Remove all of the features which has the convention “Oscar_Best_XXX_won” except for the target variable “Oscar_Best_Picture_won”.


2. Convert the target variable’s type to a numerical type by doing the transformation, “Yes” = 1, “No” = 0.

3. Remove columns with high cardinality, i.e., for every column that has a unique value frequency of 70% or higher, remove them from the dataset.

4. Perform a time split and create a training dataset spanning the period 2000-2017 and a test dataset for the movies released in 2018 – use “year” feature for the data split

5. Create a tree-based model to predict the target “Oscar_Best_Picture_won”

6. Use the model to predict the test dataset and find the maximum predicted value

Optional: Go back to the initial dataset and find the movie in 2018 that is associated with the maximum predicted value.

Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!